Mali RNA - Guided Human Genome Engineering via Cas
نویسنده
چکیده
clicking here. colleagues, clients, or customers by , you can order high-quality copies for your If you wish to distribute this article to others here. following the guidelines can be obtained by Permission to republish or repurpose articles or portions of articles ): March 26, 2013 www.sciencemag.org (this information is current as of The following resources related to this article are available online at
منابع مشابه
Prashant Mali RNA - Guided Human Genome Engineering via Cas
, 823 (2013); 339 Science et al. Prashant Mali RNA-Guided Human Genome Engineering via Cas9 This copy is for your personal, non-commercial use only. clicking here. colleagues, clients, or customers by , you can order high-quality copies for your If you wish to distribute this article to others here. following the guidelines can be obtained by Permission to republish or repurpose articles or po...
متن کاملTherapeutic genome engineering via CRISPR-Cas systems.
Differences in genomes underlie most organismal diversity, and aberrations in genomes underlie many disease states. With the growing knowledge of the genetic and pathogenic basis of human disease, development of safe and efficient platforms for genome and epigenome engineering will transform our ability to therapeutically target human diseases and also potentially engineer disease resistance. I...
متن کاملRNA-guided human genome engineering via Cas9.
Bacteria and archaea have evolved adaptive immune defenses, termed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems, that use short RNA to direct degradation of foreign nucleic acids. Here, we engineer the type II bacterial CRISPR system to function with custom guide RNA (gRNA) in human cells. For the endogenous AAVS1 locus, we obtained targetin...
متن کاملGenome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) systems in bacteria and archaea use RNA-guided nuclease activity to provide adaptive immunity against invading foreign nucleic acids. Here, we report the use of type II bacterial CRISPR-Cas system in Saccharomyces cerevisiae for genome engineering. The CRISPR-Cas components, Cas9 gene and a designer g...
متن کاملEfficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis.
Genome engineering in human pluripotent stem cells (hPSCs) holds great promise for biomedical research and regenerative medicine. Recently, an RNA-guided, DNA-cleaving interference pathway from bacteria [the type II clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) pathway] has been adapted for use in eukaryotic cells, greatly facilitating genome editi...
متن کامل